Departement News

Quantum sensors decipher magnetic ordering in a new semiconducting material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Read more

Using mirrors to improve the quality of light particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

Read more

High-speed quantum memory for photons

Physicists from the University of Basel have developed a memory that can store photons. These

quantum particles travel at the speed of light and are thus suitable for high-speed data transfer.

The researchers were able to store them in an atomic vapor and read them out again later without

altering their quantum mechanical properties too much. This memory technology is simple and

fast and it could find application in a future quantum Internet. The journal Physical Review Letters

has published the results.

Read more

Jelena Klinovaja and Ilaria Zardo receive prestigious EU grants

The European Research Council (ERC) has awarded both professors Jelena Klinovaja and Ilaria Zardo from the Department of Physics at the University of Basel an ERC Starting Grant. The two physicists will receive up to 1.5 million Euros over the course of the next five years for their ambitious research projects.

Read more

Manipulating electron spins without loss of information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

Read more

Coupling a nano-trumpet with a quantum dot enables precise position determination

Scientists from the Swiss Nanoscience Institute and the University of Basel have succeeded in coupling an extremely small quantum dot with 1,000 times larger trumpet-shaped nanowire. The movement of the nanowire can be detected with a sensitivity of 100 femtometers via the wavelength of the light emitted by the quantum dot. Conversely, the oscillation of the nanowire can be influenced by excitation of the quantum dot with a laser. Nature Communications published the results.

Read more

Winner of the golden chalk, the golden correction pen & the golden scale 2017!

Winner of the golden chalk, the golden correction pen & the golden scale 2017!

Read more

Great financial support for new center of excellence in quantum physics

Die Georg H. Endress Stiftung unterstützt das Projekt «Quantum Science and Quantum Computing» der Universität Basel und der Albert-Ludwigs-Universität Freiburg mit bis zu zehn Millionen Franken über zehn Jahre. Das neue Exzellenz-Zentrum unter dem Dach von Eucor – The European Campus stärkt die Vorreiterrolle der beiden Universitäten im Bereich der Quantenphysik.

Read more

New method of characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

 

 

Read more